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The quantum Hall effect in graphene p-n junctions is studied numerically with emphasis on the effect of
disorder at the interface of two adjacent regions. Conductance plateaus are found to be attached to the intensity
of the disorder and are accompanied by universal conductance fluctuations in the bipolar regime, which is in
good agreement with theoretical predictions of the random matrix theory on quantum chaotic cavities. The
calculated Fano factors can be used in an experimental identification of the underlying transport character.
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I. INTRODUCTION

When a monolayer of honeycomb lattice is singled out of
graphite,1 this two-dimensional material, dubbed graphene,
acquires extraordinary electronic properties.2–4 Electrons in
graphene mimic massless Dirac fermions with extremely
high mobility and tunability,5,6 which makes this material
interesting both theoretically and practically. The tunability
of the carrier type via the electric-field effect, in particular,
allows for the realization of graphene p-n junctions using
only electrostatic gating.7,8 The quantum Hall effect in these
graphene p-n junctions has shown new fractional plateaus in
the bipolar regime7 that were explained by uniform mixing
among edge states at the junction interface.9 The mechanism
of the mode mixing, however, is still unclear.

In this paper we address this problem by investigating the
transport characteristics of graphene p-n junctions in the
quantum Hall regime with disorder at the junction interface.
Our calculations are based on the Landauer-Büttiker formal-
ism for coherent transport,10 and the results are explained
using the random matrix theory �RMT� of quantum
transport.11,12

II. MODEL AND METHOD

The setup of our simulation is illustrated in Fig. 1. A
graphene strip of width W is divided into two regions by a
transition area with length d. In either region the carrier type
and density can be locally tuned through an electrostatic gat-
ing, and the relative value of the Fermi energy to the local
charge neutrality point is defined as the relative Fermi energy
Ef

�r�. The whole sample is subjected to a perpendicular mag-
netic field and the Landau levels are formed in the quantum
Hall regime.13 With a specific Fermi energy, the filling factor
of Landau levels is scarcely dependent on the details of the
sample edge provided that the sample size is big enough;14

therefore, we use samples with zigzag edges to carry out our
simulation but the results are applicable to general cases. On
the energy scale of our problem, both Zeeman splitting and
spin-orbit interaction are negligibly small. Different spin
states can be taken as degenerate and uncorrelated; thus, we
assume that spin is irrelevant in our calculation and simply
multiply the result by a factor accounting for the spin degree
of freedom. For this reason the filling factors �1 and �2 given

below are all “spinless,” i.e., their values are �1, �3, �5. . .
instead of �2, �6, �10. . ..

Magnetoconductance of a graphene p-n junction has been
theoretically discussed in terms of its valley isospin
dependence.15 These discussions in general assume an ab-
sence of intervalley scattering across the graphene p-n junc-
tion. To explain the fractionally quantized plateaus observed
in the experiments,7,8 however, full mode mixing was re-
quired in random matrix theory, which inevitably involves
intervalley scattering.9 We attribute the intervalley scattering
in our model to disorder potential, which varies quickly
enough in the scale of the lattice constant. Disorder in
graphene may have various sources, and the understanding
of its role in transport properties is still incomplete.4,16

In this paper we focus on the effect of the random poten-
tial at the interface of the junction. The reason is that current
inside either region 1 or region 2 is carried by quantum Hall
edge states17 thus immune to most disorder inside either re-
gion, while scattering among states at the interface of the two
regions contributes to the major effect of disorder on the
overall conductance. Disorder at the interface may come
from intrinsic sources such as vacancies and impurities or
from extrinsic sources such as random potential introduced
by the irregularities of the gate edge. We model the disorder
potential at the interface by using the Anderson-type on-site
energy,18 which varies randomly from site to site within the
transition area, where a potential slope connecting two sides

FIG. 1. �Color online� Schematic of a graphene junction. Two
locally gate-controlled regions of a graphene strip �width W�, con-
nected with a reservoir at each of the far ends, are jointed by a
transition area �length d� where potential is assumed to be com-
posed of a slope along the strip and a random distribution over each
site within. The lower curve shows the profile of the relative Fermi
energy Ef

�r�.

PHYSICAL REVIEW B 78, 205308 �2008�

1098-0121/2008/78�20�/205308�7� ©2008 The American Physical Society205308-1

http://dx.doi.org/10.1103/PhysRevB.78.205308


of the junction serves as the background potential. Hence the
total Hamiltonian reads

H = �
i

��ri�ci
†ci − �

�i,j�
�tei�ijci

†cj + H.c.� , �1�

where ci
† and ci are the electron creation and annihilation

operators at site ri��xi ,yi�, respectively, t	2.8 eV is the
nearest-neighbor hopping energy in the graphene lattice, and
�i , j� stands for a nearest-neighboring pair;

�ij =
e

�
A
 ri + r j

2
� · �ri − r j� �2�

is the phase acquired from an electron hopping from r j to ri
in an external field B described by vector potential A and the
on-site energy ��ri� is �1 and �2 in regions 1 and 2, respec-
tively;

��ri� = ��2 − �1�
xi

d
+

1

2
��1 + �2� + rand��� �3�

in the transition area ��xi��d /2� with rand��� as a random
number uniformly distributed in �−� /2,� /2�. The width of
the junction in our simulation is taken to be W
=200�
3a /2�	42.6 nm, where a	0.246 nm is the lattice
constant of graphene and the length of the interface area is
taken to be d=20a	4.9 nm. Landau gauge A�r�= �−By ,0�
is adopted with the magnitude of the magnetic field B
	113 T, which is equivalent to a magnetic flux 	
=h /701e in each unit cell. The magnetic length in this case is
lB=
� / �eB�	2.4 nm, which is about a half of the length of
the interface area or 1/18 of the width of the sample. It
should be mentioned here that in a real sample, which is
presumably much larger in size, the magnetic field necessary
for the quantum Hall effect can be much smaller.

We assume coherent transport in the graphene junction,
where the Landauer-Büttiker formalism can be applied.10

Transmission functions Tpq �p ,q=1,2 and p�q� of the junc-
tion are calculated by using the recursive Green’s function
technique.19,20 Vanishing net current in equilibrium implies
that T21=T12=T; therefore, the conductance is proportional
to either of the transmission functions G= �e2 /h�T, where the
spin degeneracy has been included in T, or the variance of
the conductance Var�G�= �e2 /h�2Var�T�, where Var�T� rep-
resents the variance of T. In the following we will be satis-
fied with observing only the behavior of T in different situ-
ations. Each situation, that is, each experimental condition
under which measurements are made, is identified with a
specified combination of �1, �2, and �, while various con-
figurations of disorder are subjected to some self-averaging
process in each measurement. This self-averaging process
could be a result of time-dependent electric field used in the
experiments9 and will suppress the fluctuation of the mea-
sured conductance; thus it makes the mean value a reason-
able account for the experimental observation. Our calcula-
tion extracts the mean and the variance of the transmission
functions T in each situation from output of 40 000 samples
with different disorder configurations.

III. RESULTS

The calculated transmission functions as shown in Fig.
2�a� have surprisingly recovered the quantized transport pla-
teaus observed in the experiment by Williams et al.7 In junc-
tions with the disorder strength �=2t �solid lines in Fig. 2�,
the ensemble average of the transmission functions form
nearly perfect plateaus in the bipolar regime �Ef

�r2�
0�, and
the height of each plateau is

�T� = 2
��1�2�

��1� + ��2�
�4�

with �total���1�+ ��2�. Corresponding to each plateau of the
averaged transmission function, the ensemble variance of T
also develops into a plateau described by

Var�T� = 4
��1�2�2

���1� + ��2��2����1� + ��2��2 − 1�
. �5�

Both Eqs. �4� and �5� are the predictions of the RMT on a
quantum chaotic cavity,12 with the additional factors of 2 and
4 from the spin degeneracy. In the unipolar regime �Ef

�r2�

�0�, plateaus of the ensemble average �T� are only partly
formed when �=2t, and the height may not be accurate as
the expected values given by

FIG. 2. �Color online� �a� The mean and �b� the variance of the
transmission function T as functions of the relative Fermi energy
Ef

�r2� in region 2 with fixed relative Fermi energy Ef
�r1� in region 1

and fixed disorder strength �. Cases with different Ef
�r1�’s and dif-

ferent �’s are also compared. Ef
�r1��0 implies n type of region 1.

Ef
�r1� / t=0.10 corresponds to the filling factor �1=1 and Ef

�r1� / t
=0.15 corresponds to �1=3.
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�T� = 2 min���1�, ��2�� . �6�

The transmission functions show large ensemble variance
where �T� has a large deviation from Eq. �6�. Decreased dis-
order strength in the junction interface, in contrast, leads to
better-developed plateaus of �T� in the unipolar regime at the
cost of losing the quantized values of �T� and Var�T� in the
bipolar regime. This is presented as the dash lines in Fig. 2
with �=0.5t.

The plateaus described by Eq. �4� in the bipolar regime
and described by Eq. �6� in the unipolar regime are the sig-
nature of the quantum Hall effect in a single graphene
junction,7 although in some cases the accuracy of the plateau
is poor in the experimental data7,8 compared with the ex-
pected value. By taking into account the disorder in the junc-
tion interface area and a self-averaging process in the mea-
surement, our calculations clearly produce these plateaus. In
addition, the lack of the accuracy of the plateau height is
attached to the strength of the disorder and is reflected in the
variance of the transmission functions.

The experimentally observed conductance plateaus of a
bipolar graphene junction in the quantum Hall regime have
been explained as the result of the complete mixing of quan-
tum Hall edge states at the junction interface due to scatter-
ing, and the departures of the experimental data from Eq. �4�
have been attributed to the incomplete mixing of edge
states.7,9 We emphasize here that because the spin-flip pro-
cess is negligible in this system, the mode mixing can only
happen among states of the same spin quantum number. Thus
to correctly express �T� and Var�T� in terms of the filling
factors �1 and �2, the filling factors must be spinless, with the
spin degree of freedom included as an extra multiplier to T.
Such expressions, compared with the expressions using the
spinful filling factors �2, �6, �10. . .,9 show no quantita-
tive difference as for �T� but significant differences as for
Var�T�.

The disorder dependence of the transmission functions
with specific combinations of filling factors in the bipolar
regime is shown in Fig. 3. The shadowed region �roughly
1.7t
�
2.8t� is where complete mode mixing happens in
all three cases, i.e., �1=1 and �2=−1,−3,−5, respectively.
The averaged transmission functions develop into plateaus of
height described by Eq. �4� simultaneously in this region,
and the ensemble variances of the transmission functions
also develop into plateaus predicted by Eq. �5�. In the lan-
guage of the RMT,11,12 the ensembles of scattering matrices S
�of a specific spin quantum number� under these circum-
stances are the circular unitary ensembles �CUEs�; that is, S
matrices in these ensembles are uniformly distributed over
the unitary group U��total�. The average over the CUE is
equal to an integration over the unitary group. It is this inte-
gration that leads to the “universal” value of the averaged
transmission function �4� and the universal conductance fluc-
tuation �UCF� given by Eq. �5�. The graphene bipolar junc-
tions in this disorder regime �shadowed� are nearly ideal re-
alizations of the quantum chaotic cavities characterized by
Eqs. �4� and �5�.

The ensemble of S matrices, however, is actually depen-
dent on the disorder strength �, which represents how much

the scattering potential can be varied from one sample to
another. In Fig. 3 we see that to the left of the shadowed
region �roughly �
1.7t�, both �T� and Var�T� deviate from
Eqs. �4� and �5� with decreased �, indicating the deviation of
the actual ensembles of S matrices from the CUEs. In other
words, these are the cases of incomplete mode mixing. No-
tably, when �1=−�2=1 there is an extended range of �
where the plateau of �T� is preserved. This is easily under-
stood as there are only two modes to be mixed in this case.
When the disorder at the junction interface is larger than the
range of the shadowed region in Fig. 3, on the other hand,
the conducting edge modes in either region 1 or region 2 are
expelled from the junction interface area gradually. Scatter-
ing between modes from one side of the junction to the other
is weak and both �T� and Var�T� decrease until the whole
junction is “cut off.” This is the case of what we see in the
large-� regime of Fig. 3.

As compared with the bipolar junctions, transport in a
unipolar junction with disordered junction interface has a
more straightforward picture. The conductance of a unipolar
junction is mainly contributed from the compatible edge
modes in the two regions, and the tunneling of carriers from
one region to another mainly happens near the lateral edges.
The disorder at the interface impedes the coupling of these
modes to reduce the transmission through the junction,
which is in contrary to the bipolar cases. The calculated �T�
and Var�T� in the unipolar regime are shown in Fig. 4 with
different combinations of filling factors. In each case �T�
exhibits a quantized plateau when the disorder is weak �shad-

FIG. 3. �Color online� �a� The mean and �b� the variance of the
transmission function T as functions of the disorder strength � in
bipolar junctions. Region 1 is of n type with the filling factor �1

=1 and region 2 is of p type with the filling factor �2=−1,−3,−5,
respectively. The shadow highlights the regime where both �T� and
Var�T� show plateaus predicted by Eqs. �4� and �5�, respectively.
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owed� and starts to deviate from the plateau at a critical
value of the disorder strength where Var�T� also begins to
deviate from zero. We notice that the shadowed regions in
Figs. 3 and 4 do not overlap over the range of �, which
implies that �T� does not develop into plateaus simulta-
neously in the bipolar regime and the unipolar regime espe-
cially when the filling factors are large. This fact highlights
the opposite roles the disorder plays in the formation of con-
ductance plateaus in the bipolar and the unipolar junctions. It
stabilizes the plateaus in the bipolar case when its intensity is
in a certain nonzero range, while it tends to destroy the pla-
teaus in the unipolar case at the same time, although in the
limit of strong disorder electrons will be blocked from tun-
neling through the junction in both cases.

The character of the quantized transport in these junctions
can be experimentally identified by measuring the electron
shot noise.21 The Fano factor, defined as the ratio of the
actual shot noise to the Poisson noise, is extracted from our
simulation using the equation F= ��Tn�1−Tn�� / ��Tn�, where
the summations are taken over different transmission eigen-
values indexed by n. It is found that the Fano factors corre-
sponding to the conductance plateaus in the unipolar regime
are identically zero as expected from the dissipationless
transport via the quantum Hall edge modes. In the bipolar
regime, the Fano factors develop into plateaus described by

F =
��1�2�

���1� + ��2��2 − 1
�7�

corresponding to the plateaus of �T�, as shown in Fig. 5.
Equation �7� is again a straightforward outcome of the RMT
applied to a quantum chaotic cavity with a few transmission
modes.22 It is quantitatively different from the Fano factors
discussed in Ref. 9 especially when the number of the trans-
mission modes is small. This is a key to examine experimen-
tally the existence of the UCF revealed in our simulation.

IV. DISCUSSIONS AND CONCLUSION

Before ending this paper we address the issues on the
sources and types of disorder in graphene, which are relevant
to this study. The experimentally observed conductance pla-
teaus were explained as a result of the full mixing of these
quantum Hall edge modes.7,9 The details of the mode mixing
are determined by the form of the disorder and in turn pro-
vide information about the disorder therein. The quantum
Hall edge modes in a graphene strip can be indexed by two
quantum numbers, spin and valley isospin,23 besides the Lan-
dau levels they belong to. Thus the mechanism of the mode
mixing inevitably involves the presence of spin-flip scatter-
ing and/or intervalley scattering. Considering the negligible
magnetic impurities and spin-related interaction in the cur-
rent graphene samples and ignoring the magnetic edge states
reported in some specific graphene ribbons,24 we assume the
absence of spin-flip scattering in this study and use the spin-
less filling factors �1 and �2 �=�1, �3, �5. . .� in our
expressions.25 The presence of intervalley scattering among
the quantum Hall edge modes in the graphene p-n junctions,
however, is still a question. Previous works on the disorder
effects in graphene p-n junctions generally assumed weak
intervalley scattering and discussed the valley-isospin depen-
dence of the conductance.15 For example, in the work by
Tworzydło et al.,26 it was assumed that each impurity has the
Gaussian potential profile Ui exp�−�r−Ri�2 /2�2� of range �
and random height Ui� �−
 ,
�. A large � implies a long
range of the disorder potential that suppresses the intervalley
scattering, while a small � implies 
-functionlike disorder
potential, which provokes the intervalley scattering. The
former case was studied but the plateaus observed in the
experiments were not properly recovered. That is the reason
why we choose the latter case as our starting point in this
work, although the origin of the short-range disorder poten-
tial is not completely understood. It turns out that our calcu-
lations do produce the reported conductance plateaus as in
Eq. �4� as well as quantities such as the Fano factors as in

FIG. 4. �Color online� The averaged transmission function �T�
as a function of the disorder strength � in unipolar �n-n� junctions
with different combinations of filling factors. The inset shows the
corresponding variance of T. The regime is shadowed where all
plateaus of �T� are preserved.

FIG. 5. �Color online� Fano factors in the bipolar regime as
functions of the relative Fermi energy Ef

�r2� with �1=1 �black� and 3
�red/dark gray�, respectively, and �=2t. Plateaus predicted by Eq.
�7� are indicated by short dash lines.
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Eq. �7� that can be further examined experimentally. Still it is
interesting to investigate the crossover effects between long-
range disorder potential and short-range disorder potential in
the junctions, and the results would possibly explain the not-
fully-developed conductance plateaus in the experiments.7,8

This investigation will be a subject of our later work. Fur-
thermore, there also exist other forms of disorder that cannot
be described by random local potential.4,16 For example, ef-
fective gauge fields can be induced by ripples, topological
lattice defects, strains, curvatures, etc. in the graphene
sample and will affect the Landau levels especially the low-
est one.27 We believe that these various forms of disorder
will affect the behavior of the edge-mode mixing in various
manners, but this is out of the scope of the current work.

In short, our numerical simulation of the quantum Hall
effect in graphene p-n junctions has reproduced the quan-
tized conductance plateaus observed in the experiment. The
UCF and quantized values of the Fano factors are found to
be accompanying the conductance plateaus in the bipolar
regime, which is well explained by the RMT of quantum
transport. The bipolar graphene junction in the quantum Hall
regime mimics an ideal quantum chaotic cavity, which is
another example of the extraordinary transport character of
graphene.

Note added. At this point, we would like to note that we
recently became aware of a similar work by W. Long et al.31
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APPENDIX: DERIVATION OF EQS. (4), (5), and (7)

In this appendix, we derive Eqs. �4�, �5�, and �7� using the
random matrix theory. Random matrix theory of quantum
transport is based on the assumption that the scattering ma-
trix S of a chaotic cavity is uniformly distributed over a
specific group �the so-called circular ensemble� determined
by the symmetry of the Hamiltonian. Basically there are
three classes of the groups.28 If time-reversal symmetry is
broken ��=2�, S is only constrained by unitarity, which is a
result of current conservation; thus, S belongs to a unitary
group. If time-reversal symmetry is preserved together with
the presence of spin-rotation symmetry ��=1�, then S is both
unitary and symmetric: S=ST, where the superscript T indi-
cates the transpose of the matrix. This leads to an orthogonal
group. If time-reversal symmetry is preserved but spin-
rotation symmetry is broken ��=4�, which is the case when
spin-orbit interaction is present, then S is unitary and self-
dual: S=SR, where the superscript R indicates the dual of a
quaternion matrix. The group is called symplectic.

In random matrix theory, the statistics of transport prop-
erties is obtained from the statistics of an appropriate circular
ensemble. For example, the mean of the transmission prob-
ability Tnm��Snm�2 is given by

�Tnm� =� d��S�SnmSnm
� , �A1�

where n and m stand for transmission eigenchannels. We will
omit the mathematical details of formulating the measure
d��S� in a group space where S belongs to and use the fol-
lowing two equations as being established:29

�U�aU�b
� �CUE =

1

N

��
ab, �A2�

�U�aU��a�U�b
� U��b�

� �CUE =
1

N2 − 1
�
��
ab
����
a�b� + 
���
ab�
���
a�b� −

1

N�N2 − 1�
�
��
ab�
����
a�b + 
���
ab
���
a�b�� ,

�A3�

where U is an N�N unitary matrix belonging to the CUE.
Since the system we are going to discuss only involves the
CUE, we will drop this notation hereafter.

Starting from these equations, the conductance �G�, its
fluctuation Var�G�, and the Fano factor F for the fully mixed
quantum hall edge transport in a graphene p-n junction can
be readily calculated. We first assume no spin-flip scattering
is allowed, so that S matrix for each spin component is uni-
tary by itself. The case including spin-flip scattering will be
discussed in what follows. Suppose there are 2N1 and 2N2
edge states �they are also eigenchannels away from the junc-
tion area� at the two sides of the junction, respectively, the
full S matrix is of dimension 2�N1+N2�, but it is divided into
two uncoupled spin subspaces in the absence of spin-flip
scattering; therefore, matrices in the CUE are only of dimen-

sion Ntotal=N1+N2 in terms of each spin subspace. Also the
strict spin degeneracy implies that Snm

� =Snm
−� =Snm. Regarding

this we have

�G� = �
�=�1

�
n=1

N1

�
m=1

N2

�Tnm
� �

e2

h

= 2�
n=1

N1

�
m=1

N2

�SnmSnm
� �

e2

h

=
2N1N2

N1 + N2

e2

h
, �A4�
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Var�G� = �G2� − �G�2 = �
 �
�=�1

�
n=1

N1

�
m=1

N2

Tnm
� �2

�
 e2

h
�2

− �G�2

= 4 �
n,n�=1

N1

�
m,m�=1

N2

�SnmSn�m�Snm
� Sn�m�

� �
 e2

h
�2

− �G�2

=
4N1

2N2
2

�N1 + N2�2��N1 + N2�2 − 1�

 e2

h
�2

. �A5�

The Fano factor F= �Tr�tt†�1− tt†��� / �Tr�tt†��, where t is the
transmission submatrix of S �Ref. 30� and Tr�tt†� is nothing
but G / e2

h . Thus

F = 1 −
N1 + N2

2N1N2
�

�=�1
�

n,n�=1

N1

�
m,m�=1

N2

�Snm
� Sn�m

� �Sn�m�
� Snm�

� ��

=
N1N2

�N1 + N2�2 − 1
. �A6�

In this way we have derived the formulae expressed in Eqs.
�4�, �5�, and �7� in the framework of the random matrix
theory.

In contrast to the spin-conserved scattering case, the mix-
ing among different spin modes will lead to quantitatively
different variance and Fano factors while leaving the conduc-
tance mean unchanged. In the random matrix theory, this is

derived as following. Still suppose there are 2N1 and 2N2
edge states at the two sides of the junction, respectively, the
full S matrix is still of dimension 2�N1+N2�, but the spin-
off-diagonal parts are now nonzero and the S matrix is uni-
tary only as a whole. It is straightforward to show that in this
case the formulae corresponding to Eqs. �4�, �5�, and �7� are
given by

�G� =
4N1N2

2N1 + 2N2

e2

h
=

2N1N2

N1 + N2

e2

h
, �A7�

Var�G� =
�4N1N2�2

�2N1 + 2N2�2��2N1 + 2N2�2 − 1�

 e2

h
�2

=
4N1

2N2
2

�N1 + N2�2��N1 + N2�2 − 1/4�

 e2

h
�2

, �A8�

and

F =
4N1N2

�2N1 + 2N2�2 − 1
=

N1N2

�N1 + N2�2 − 1/4
, �A9�

respectively. Except for a coincident equivalence of the mean
values of the conductance �G�, the quantitative differences of
the UCF Var�G� and the Fano factors F between two cases,
namely, whether scattering is spin conserved or not, are ob-
vious especially when the values of N1 and N2 are small.
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